2012

Target Round Problems 1 and 2

Name _	
School _	
Chapter	

DO NOT BEGIN UNTIL YOU ARE INSTRUCTED TO DO SO.

This section of the competition consists of eight problems, which will be presented in pairs. Work on one pair of problems will be completed and answers will be collected before the next pair is distributed. The time limit for each pair of problems is six minutes. The first pair of problems is on the other side of this sheet. When told to do so, turn the page over and begin working. This round assumes the use of calculators, and calculations also may be done on scratch paper, but no other aids are allowed. All answers must be complete, legible and simplified to lowest terms. Record only final answers in the blanks in the left-hand column of the problem sheets. If you complete the problems before time is called, use the time remaining to check your answers.

Total Correct	Scorer's Initials

National Sponsors

Raytheon Company * U.S. Department of Defense *
Northrop Grumman Foundation *
National Society of Professional Engineers *
Bezos Family Foundation * ConocoPhillips *
CNA Foundation * Texas Instruments Incorporated *
ThinkFun * 3M Foundation

Raytheon

2012 MATHCOUNTS National Competition Sponsor

Founding Sponsors: National Society of Professional Engineers, National Council of Teachers of Mathematics and CNA Foundation

Copyright MATHCOUNTS, Inc. 2011. All rights reserved.

1. \$		It took Dr. Gru 30 seconds to pump the first \$9.00 worth of gasoline into his car, and it took a total of 105 seconds to pump 15 gallons of gas. Assuming gas is pumped at a constant rate, what is the cost for one gallon of gas at this station?
2	values	If $kx + 12 = 3k$, for how many integer values of k is x a positive integer?

2012

■ State Competition Target Round Problems 3 and 4

Name _			
School			
Chapter			

DO NOT BEGIN UNTIL YOU ARE INSTRUCTED TO DO SO.

Total Correct	Scorer's Initials

National Sponsors

Raytheon Company * U.S. Department of Defense *
Northrop Grumman Foundation *
National Society of Professional Engineers *
Bezos Family Foundation * ConocoPhillips *
CNA Foundation * Texas Instruments Incorporated *
ThinkFun * 3M Foundation

Raytheon

2012 MATHCOUNTS National Competition Sponsor

Founding Sponsors: National Society of Professional Engineers, National Council of Teachers of Mathematics and CNA Foundation

3 In $\triangle ABC$, shown here, \overline{AB} and \overline{AC} have each been divided into for			
	congruent segments. What fraction of triangle ABC is shaded? Express your		
	answer as a common fraction.		

4. _____ The sum of the first n terms of a sequence, $a_1 + a_2 + ... + a_n$, is given by the formula $S_n = n^2 + 4n + 8$. The sum of the first three terms, for example, is $S_3 = (3)^2 + 4(3) + 8 = 29$. What is the value of a_6 ?

2012

■ State Competition ■ Target Round Problems 5 and 6

Name _		 	
School			
Chapter	·		

DO NOT BEGIN UNTIL YOU ARE INSTRUCTED TO DO SO.

Total Correct	Scorer's Initials

National Sponsors

Raytheon Company * U.S. Department of Defense *
Northrop Grumman Foundation *
National Society of Professional Engineers *
Bezos Family Foundation * ConocoPhillips *
CNA Foundation * Texas Instruments Incorporated *
ThinkFun * 3M Foundation

Raytheon

2012 MATHCOUNTS National Competition Sponsor

Founding Sponsors: National Society of Professional Engineers, National Council of Teachers of Mathematics and CNA Foundation

2012

■ State Competition Target Round Problems 7 and 8

Name _		 	
School			
Chapter	·		

DO NOT BEGIN UNTIL YOU ARE INSTRUCTED TO DO SO.

Total Correct	Scorer's Initials

National Sponsors

Raytheon Company * U.S. Department of Defense *
Northrop Grumman Foundation *
National Society of Professional Engineers *
Bezos Family Foundation * ConocoPhillips *
CNA Foundation * Texas Instruments Incorporated *
ThinkFun * 3M Foundation

Raytheon

2012 MATHCOUNTS National Competition Sponsor

Founding Sponsors: National Society of Professional Engineers, National Council of Teachers of Mathematics and CNA Foundation

Copyright MATHCOUNTS, Inc. 2011. All rights reserved.

