2014
 Chapter Competition
 Target Round
 Problems 1 \& 2

Name \qquad
School

DO NOT BEGIN UNTIL YOU ARE INSTRUCTED TO DO SO.

This section of the competition consists of eight problems, which will be presented in pairs. Work on one pair of problems will be completed and answers will be collected before the next pair is distributed. The time limit for each pair of problems is six minutes. The first pair of problems is on the other side of this sheet. When told to do so, turn the page over and begin working. This round assumes the use of calculators, and calculations also may be done on scratch paper, but no other aids are allowed. All answers must be complete, legible and simplified to lowest terms. Record only final answers in the blanks in the left-hand column of the problem sheets. If you complete the problems before time is called, use the time remaining to check your answers.

Total Correct	Scorer's Initials

National Sponsors
Raytheon Company Northrop Grumman Foundation
U.S. Department of Defense National Society of Professional Engineers CNA Foundation Phillips 66 Texas Instruments Incorporated 3M Foundation Art of Problem Solving NextThought

1. \qquad marbles

Box A contains 142 marbles, box B contains 152 marbles and box C contains 136 marbles. Marbles are transferred only from box B to box C. What is the least number of marbles that must be transferred so that box C contains more marbles than each of the other two boxes?

2. \qquad What is the largest prime that divides both $20!+14$! and $20!-14$!?

2014
Chapter Competition
Target Round
Problems 3 \& 4

Name \qquad
School \qquad
DO NOT BEGIN UNTIL YOU ARE INSTRUCTED TO DO SO.

Total Correct	Scorer's Initials

National Sponsors
Raytheon Company
Northrop Grumman Foundation
U.S. Department of Defense National Society of Professional Engineers

CNA Foundation
Phillips 66
Texas Instruments Incorporated 3M Foundation
Art of Problem Solving
NextThought
3. \qquad ways

In how many distinguishable ways can the four letters in the word NINE be arranged?
4. \qquad quantities

A particular online vendor offers discounts for orders of 11 or more shirts, as the table shows. For how many different quantities of shirts would the cost exceed the cost of buying the least number of shirts at the next discount level?

Number of Shirts	Discount
$1-10$	no discount
$11-25$	10% off
$26-50$	15% off
$51-100$	20% off
$101-250$	30% off
251 or more	35% off

2014
Chapter Competition
Target Round
Problems 5 \& 6

Name \qquad
School \qquad
DO NOT BEGIN UNTIL YOU ARE INSTRUCTED TO DO SO.

Total Correct	Scorer's Initials

National Sponsors
Raytheon Company
Northrop Grumman Foundation
U.S. Department of Defense National Society of Professional Engineers

CNA Foundation
Phillips 66
Texas Instruments Incorporated 3M Foundation
Art of Problem Solving
NextThought
5. \qquad Each term in the sequence that begins $13,9,18, \ldots$ is the sum of three times the tens digit and two times the units digit of the previous term. What is the greatest value of any term in this sequence?
6. \qquad cm In square ABCD , shown here, sector BCD was drawn with a center C and $\mathrm{BC}=24 \mathrm{~cm}$. A semicircle with diameter AE is drawn tangent to the sector BCD . If points A, E and D are collinear, what is AE?

Name \qquad
School \qquad

DO NOT BEGIN UNTIL YOU ARE INSTRUCTED TO DO SO.

Total Correct	Scorer's Initials

National Sponsors
Raytheon Company
Northrop Grumman Foundation
U.S. Department of Defense National Society of Professional Engineers
CNA Foundation
Phillips 66
Texas Instruments Incorporated 3M Foundation
Art of Problem Solving
NextThought
7. \qquad cubes

How many distinct unit cubes are there with two faces painted red, two faces painted green and two faces painted blue? Two unit cubes are considered distinct if one unit cube cannot be obtained by rotating the other.
8. units ${ }^{2}$ What is the greatest possible area of a triangle with vertices on or above the x-axis and on or below the parabola $y=-\left(x-\frac{1}{2}\right)^{2}+3$? Express your answer in simplest radical form.

