Divisibility

Jeffrey Shi

February 5, 2016

1 Divisibility rules

To determine if a number is divisible by another number, there are a set of rules that dictate that. The ones mentioned in this page of notes are only one set of rules; there are many different rules invoving divisibility.

1.1 Divisibility by 2

Any number that ends in an even integer: $2,4,6,8,0$ will be divisible by 2 .

1.2 Divisibility by 3

For a number to be divisible by 3 , the sum of the digits must be a multiple of 3. ie. 15678 is divisible by 3 because $1+5+6+7+8=27$ and 27 is a multiple of 3 .

1.3 Divisibility by 4

For a number ot be divisible by 4 , it must be an even number and the last two digits together must be a multiple of 4 . ie. 15383744 is divisible by 4 becuase 44, the last two digits is a multiple of 4 .

1.4 Divisibility by 5

For a number to be divisible by 5 , it must end in a 5 or 0 .

1.5 Divisibility by 6

For a number to be divisible by 6 , it must be both divisible by 2 and 3 .

1.6 Divisibility by 7

Divisibility by 7 is one of the hardest to determine. There are multiple ways to determine, none of which are easy. One way is to take blocks of 3 numbers from the left and alternately sum them. If the alternating sum is a multiple of 7 ,
then is it divisible by 7 . ie. $1,369,851$ is divisible by 7 because $851-369+1=$ $483=7 * 69$
Another way to determine divisibility is to subtract 2 times the last digit from the rest of the number. If the resulting answer is divisible by 7 , then the number is divisible by 7 . ie. 483 is divisible by 7 because $48-2 * 3=42$ and 42 is a multiple of 7 .

1.7 Divisibility by 8

The divisibility rule for 8 is similar to the divisibility rule for 4 . For a number to be divisible by 8 , the number formed by the last three digits must be divisible by 8 . If the number is not easily identifiable as a multiple by 8 , you can add the last digit to two times the rest of the number. ie. 341,176 is divisible by 8 because looking at the last three digits, 176 , we see that is divisible by 8 because $17 * 2+6=40$ which is an obvious multiple of 8 .

1.8 Divisibility by 9

The divisibility rule for 9 is a very simple one; it is very very similar to the divisibility rule by 3 . If the sum of the digits is divisible by 9 , then the number is divisible by 9 . ie. 97349571 is divisible by 9 becuase $9+7+3+4+9+5+7+1=45$ which is a multiple of 9 .

1.9 Divisibility by 11

The divisibility rule for 11 is a very unique and interesting one. For a number to be divisible by 9 , the difference between the "even" and "odd" digits must be 0 or a multiple of 9 . ie. 341 is divisible by 11 because $(3+1)-(4)=0$. Let's take a larger number: $3,452,471$. Is it divisible by 11 ? Yes, it actually is because $(3+5+4+1)-(4+2+7)=0$.

