Exponents, Radicals, and Logarithms

Jeffrey Shi

January 23, 2016

(Solutions to Practice Problems are at the end)

1 Exponents

Definition 1 (Exponent) An exponent is a function expressed as a^{b} where a and b can be either any real number, constant, or variable.

1.1 Laws of Exponents

Exponents are a special set of functions in mathematics. There are laws that dictate how exponential functions interact with each other.

1. $a^{1}=a$
2. $a^{b} * a^{b}=a^{2 b}$
3. $\frac{a^{b}}{a^{c}}=a^{b-c}$
4. $a^{b^{c}}=a^{\left(b^{c}\right)}$
5. $\left(\frac{a}{b}\right)^{c}=\frac{a^{c}}{b^{c}}$
6. $a^{0}=1, a \neq 0$
7. $a^{-1}=\frac{1}{a}$
8. $x^{\frac{a}{b}}=\sqrt[b]{x^{a}}$
9. $0^{a}=0, a \neq 0$
10. 0^{0} is indeterminate; it is not defined by a single value.
11. $(a b)^{c}=a^{c} b^{c}$

1.2 Practice Problems

Simplify

1. $2^{3^{2}}$
2. $5^{0^{3}}$
3. $\frac{3^{8} 4^{10}}{3^{6} 4^{9}}$
4. $4^{4} 8^{2} \frac{1}{2^{14}}$
5. $\frac{x^{y} y^{z} z^{x}}{x^{y-1} y^{z-1} z^{x-1}}$

2 Logarithms

Definition 2 (Logarithms) Logarithms are a special type of function expressed as $\log _{a} b$. There is a set of laws that dictate how exponential functions interact with each other and with exponential functions.

2.1 Laws of Logarithms

1. $\log _{a} b=c \Rightarrow a^{c}=b$
2. $\log _{a} b+\log _{a} c=\log _{a} b c$
3. $\log _{a} b-\log _{a} c=\log _{a}\left(\frac{b}{c}\right)$
4. $\log _{a} b^{c}=c \log _{a} b$
5. $a^{\log _{a} b}=b$
6. $\ln a=\log _{e} a \Rightarrow \ln e=1$
7. $\log _{a} 1=0$

2.2 Practice Problems

Simplify as much as possible

1. $\log _{3} x+\log _{3} y$
2. $\log _{4} x y-\log _{4} y z$
3. $\log _{5} 16-\log _{5} 4$
4. $2^{\log _{2} x y z}$
5. $\frac{\ln e^{3}}{\ln e^{6}}$

3 Radicals

Definition 3 (Radicals) Radicals are a special type of function expressed as $\sqrt[n]{x}$. There is a set of laws that dictate how radical functions interact with each other and with exponential functions.

3.1 Laws of Radicals

1. $\sqrt[n]{x} * \sqrt[n]{y}=\sqrt[n]{x y}$
2. $\sqrt[n]{x^{m}}=x^{\frac{m}{n}}$
3. $\sqrt[n]{x^{n}}=x$
4. $\frac{\sqrt[n]{x}}{\sqrt[n]{y}}=\sqrt[n]{\frac{x}{y}}$
5. $\sqrt[n]{x} * \sqrt[m]{x}=\sqrt[m n]{x^{m+n}}$
6. $\frac{\sqrt[n]{x}}{\sqrt[m]{x}}=\sqrt[m n]{x^{m-n}}$

3.2 Practice Problems

Simplify

1. $\sqrt[3]{5} * \sqrt[3]{7}$
2. $\sqrt[2]{4^{4}}$
3. $\frac{\sqrt{4}}{\sqrt{9}}$
4. $\sqrt[7]{2} * \sqrt[3]{2}$
5. $\frac{\sqrt[3]{5}}{\sqrt[2]{5}}$

4 Solutions

$4.1 \quad 1.2$

1. $2^{9} \Rightarrow 512$
2. 1
3. $3^{2} 4 \Rightarrow 36$
4. 1
5. $x y z$

$4.2 \quad 2.2$

1. $\log _{3} x y$
2. $\log _{4} \frac{x y}{y z} \Rightarrow \log _{4} \frac{x}{z}$
3. $\log _{5} 4$
4. $x y z$
5. $\frac{1}{2}$

$4.3 \quad 3.2$

1. $\sqrt[3]{35}$
2. 8
3. $\frac{2}{3}$
4. $\sqrt[21]{2^{10}} \Rightarrow \sqrt[21]{1024}$
5. $\sqrt[6]{5}$
